Moon Lander Design

Our last post showed the mission planning script for our lunar lander. The next step was to layout the lander. We did this using the BuildCADModel function in the Spacecraft Control Toolbox. The propulsion system is designed to meet the requirements of the mission plan. We use six 1 N HPGP thrusters for attitude control and one 220 N thruster for orbit maneuvers and landing. We have two HPGP tanks for the fuel. There are two cameras. One is used as a star camera for attitude determination and navigation and the second, which is articulated, is used for optical navigation, descent navigation and science. The IMU and C&DH box can bee seen in the drawing.

LunarCAD

The solar array has two degrees-of-freedom articulation. The high gain antenna is also articulated. We adapted the landing legs from the Apollo Lunar Module. The thruster layout is shown in the following figure and is done using the ThrusterLayout function in the toolbox.

LunarThruster

We get full 6 degree-of-freedom attitude control and z-axis velocity change control. We use the 220 N engine as the primary engine for landing but can also use four of the 1 N thrusters for fine terminal control.

We are working on the science payload for the mission. One experiment will be to mine helium-3 from the surface. Helium-3 would be a fuel for advanced nuclear fusion power plants and nuclear fusion propulsion systems.

This entry was posted in Aerospace, General and tagged , , , by Michael Paluszek. Bookmark the permalink.

About Michael Paluszek

Michael Paluszek is President of Princeton Satellite Systems. He graduated from MIT with a degree in electrical engineering in 1976 and followed that with an Engineer’s degree in Aeronautics and Astronautics from MIT in 1979. He worked at MIT for a year as a research engineer then worked at Draper Laboratory for 6 years on GN&C for human space missions. He worked at GE Astro Space from 1986 to 1992 on a variety of satellite projects including GPS IIR, Inmarsat 3 and Mars Observer. In 1992 he founded Princeton Satellite Systems.

Leave a Reply

Your email address will not be published. Required fields are marked *