Direct Fusion Drive Mars Mission – Deep Space Habitat

Check out our new banner! We modified our spacecraft to use NASA’s Deep Space Habitat:







Image Source: NASASpaceFlight

The habitat has a 500 day configuration, with more than enough room for all of the astronauts and their supplies!

We will use the Orion spacecraft for transfer from Earth’s surface to Earth orbit, where it will dock with the DFD powered spacecraft. ¬†That is what the banner image is portraying! Once the astronauts are aboard the DFD powered spacecraft, they will travel to Mars and back in roughly 10 months, including a 1 month stay at Mars. ¬†After they have returned to Earth orbit, the spacecraft will dock with the Orion capsule. The crew can then safely return to Earth’s surface aboard the Orion!

Human Missions To Mars

You may have noticed that we have a new banner image of our Direct Fusion Drive (DFD) transfer vehicle with the Orion spacecraft.

This is because we have been able to shrink the spacecraft so that it fits on top of a single NASA Space Launch System (SLS)

Evolved Configuration launcher which can launch up to 130 metric tons into low earth orbit! The first mission would be to orbit Mars for a few days and then return to Earth. The vehicle would remain in orbit around the Earth. The next SLS launch would bring up a second transfer stage with the lander. A third launch would bring up another Orion and the crew for the landing mission.

The DFD transfer vehicles stay in low-earth orbit where they can be used for a variety of missions, such as deflecting asteroids or lunar missions.

We are currently working on the mission design along with conceptual designs of the transfer vehicle and Mars lander. A key consideration in the mission plan is keeping the astronauts healthy so astronaut physiology is a key part of our research.

Our colleagues at the Princeton Plasma Physics Laboratory

are running two experiments that support DFD. One is PFRC-2, Princeton Field Reversed Configuration 2, which is testing the reactor core. Here you see the experiment in action!

and MNX which is studying magnetic nozzles. We have two more test reactors planned, PFRC-3 and PFRC-4. The last will burn deuterium and helium-3 to produce fusion power. After that we will be ready to build a space version of the fusion propulsion system.

Of course, this reactor could be used for terrestrial power generation. In future posts we’ll talk about sources of helium-3 and alternative fuels that could power this reactor.